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Motivation to study EM corrections to K -

This morning’s session is about the studies of K - @ decay and €’

@ Progresses reported by R. Mawhinney, T. Wang, C. Kelly, F. Romero-Lopez

Direct CP violation in K -

6,_1( o) = ie’(927%0) Re Ay (|mA2 - Ion)
T3 T T Re Ag \Re Ay Re Ao

@ Turn on EM interaction, Aj - A}, 6; > 4], 1=0,2

Though Aj — A, is an O(cv) effect, its size could be enhanced by a factor of 22
due to the mixing with Ag and A/ =1/2 rule }

@ ChPT+Large-N.: Cirigliano et al, hep-ph/0008290, hep-ph/0310351
—"the isospin violating correction for ¢ is below 15%”"



Technical issues on including electromagnetism

@ Lellouch-Liischer’s formalism relies on a short-range interaction
= long-range EM requires the change in the FV formalism
Main topic of this talk

@ EM interaction mixes / =0 and | =2 77 scattering
= K — 7 decay becomes a coupled-channel problem
See Latl7 proceeding: EPJ Web Conf. 175 (2018) 13016

@ Possible photon radiation
= coupled channels further mixed with 3-particle channel (77)
Under investigation
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Strategy to include electromagnetism

Include EM interaction in the Coulomb gauge

3)?/ ! (%
L= Y eAKX)-gq(x)- 3 fd pq(X', t)pg (X, 1)

q=u,d,s q,9’=u,d,s 4m |;<I _)?|

Transverse radiation Coulomb potential

@ Adding transverse photon to mm = three-particle problem
@ At current stage, focus on Coulomb potential only

Photon propagator in the Coulomb gauge

1 1 Pipj
Goo(p) = i Gij(p) = = (50' - ?;), Gio(p) = Goi(p) =0
| S ——
V(r):4—71”



Coulomb potential in the finite volume

Encode long-range EM interaction in the finite box — QED,
[helpful discussion with Luchang Jin]

@ Coulomb potential in periodic box Vi (r) =3, V(r+nl)
» vVn, V(r+nl) has impact on r ~ 0 region and 3, causes divergence

o Modify Vi (r) - Vi (r) = Vi(r) - & [ d®r V(r) to remove the divergence

! . ~ lpr
» This is equivalent to remove zero mode: V| (r) = 4”‘“ Ype0 S5

@ However, V; introduces O(1/L) FV effects

p2

N 1 AT jne . e Qe
SV(r) = Vu(r) - V(r) = (L3 2% f (2w)3) &P, lmoV() = -rt ¥ 285
p=

Similar situation happens for massive photon and C* boundary condition
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Adopt Lischer’s method

In the peridoic " exterior region” where strong interaction vanishes
@ Without QED
» 1)(r) can be constructed by partial wave scattering amplitude
W(r) = ZZ bem Yem(2) {cos g je(kr) +sindp ng(kr)}
m

where jy(kr), ne(kr) are regular and irregular Bessel function
» 1(r) is related to singular periodic solution of Helmholtz Eq.

(1) = S vim G (r, k)
Im

» This leads to quantization condition ¢(k) + (k) = nm
e With QED
> Jjone — Fu G

be(r) = 2 bim Yim() {cos 3¢ Flkr) +sindy Ge(kr)} + O(7%)
{m

However, Vi (r) is not of type % - O(F) effect
» Solution of (Coulomb) Helmholtz Eq. can be perturbatively expanded

Ve (r) =Y VimGeom(r, k), Geom = G,g(,?,) + Gg(;) +0(a2) s/



Liischer’s quantization condition

@ Wave function can be written in two forms

e (r) = bum Yem(Q) {cos &, Fo(kr) +sindy Ge(kr)} + o(%)
m

be(r) = 3 vimGeim(r k), Geum= G2+ GLY + 0(a?)
Im
@ Equating two expressions yields quantization condition ¢.(k) + 6(k) = nm
11 1

toe(k) = (1 il . S

cotge(k) = (L) 3 B~
e 1 1 1 1
lim 8 -—
e {;, m(2m)*n2 - ()2 (n-m)Zm2 - (KLy2 ~ 4n

W

1
In(1/kr) + EJ

(e}

£ the Sommerfeld parameter

with ==

(See also formula for scattering length [Bean & Savage, 1407.4846])
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Kim, Sachrajda and Sharpe’s method

Finite volume effects arise from 2-particle propagators

dpo 1 1 1
( 27:L3Z /( ) ) e Popy_mricsP

Sz(P,p)

Integrating pp leaves two terms

1 1
th = 2+ﬁ2
2p((E-wp) =) 2wp((Exwp)-wd) 0 P-VITP

power-law FV effects  exponential FV effects

U U

on-shell amplitude off-shell quantlty
P D2

Include photon exchange (=1 — )
dpy dP2 d* pP1
([ : : Z f (277)4f o )4)f(P1)52(P p1) 4252(P p2)g(p2)

P1#P2

G=p1—-pP2#0 = Off-shell quantity also contributes O(1/L") FV effects

oy (6]




Coulomb potential with truncated range Ry < L/2

Truncate the Coulomb potential with a range R+

VD (e aefr, forr<RrT
r)=
0, forr>Rr

Build periodic potential

VD) =S v (r+nL)

Liischer’s quantization condition holds for V;(r) + V(7)(r)

kL

o(q)+0r(k)=nm, gq= >

So does Lellouch-Liischer formula

Both Liischer's method in potential theory and KSS method in QFT work well J

Remaining issue is to relate truncated 6+ and At to the physical ones
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Truncation effects in scattering amplitude

Ve + V1)

St
se=sr = Q0@+ 0lad)

The relation for scattering amplitudeAV
Sc=Sr-i2md(E-E")(E,-, TIAV|E,+,T)
@ AV(r) is non-zero only for r > Rt
e For w(Ti)(r) =(r|E, £, T), the functional form is known for r > Rt

T sin(kr +67) uis,
7k r

@ Correction to scattering amplitude can be evaluated

Re )%
(B~ TIAVIE+T) = [ 7 dProl0"(n2eu(0(r) o

(T*) (r) = for S-wave



Truncation effects in decay amplitude
o - ww decay amplitude
-0 =00 +
AT a
e~ ar = Q0T ) + 0w

AV

Truncation effects can be determined

R
AC—AT:fR a0 (r )—uo(r)AT
T

7 e
7wk r

o is the free wave function: 1o(r) = -3



Examine in the quantum field theory

For scattering amplitude m

AV

f(p1)S2(P,p1)AV(G)S2(P, p2)g(p2), G =p1— P2

d*py f d*p

(2m)* J - (2m)*

@ AV/(§) can be written as

AV(@G) = [ dPrZeeiar
>Rt r

@ Integrating over pjg leaves two terms

435 e-iPLT WER e iPLT
A f(p1) oY f P f(p1)
_wp)

@m? PV 2w, (E—wp)? @0 PV 2w, ((E+wp)? )
on-shell scattering wave function suppressed by e~\ecpRr
For decay amplitude m
AV
on-shell ¢{)* e x Ar

One obtains the same structure in QFT as that in potential theory |, k



When photon crosses the bubble

-

Check the singularity for the on-shell amplitude

(90, 7)
- ~ >
(5.k) (5.%)
B2 =k +m?=kK*+m?
f dqo 1 1 1
(27T)3 (5 q0)2 —(k=q)2-m?+ e (5- q0)2 — (k"= §)2-m?+ic g

Integrate over qg

d3 1 i*f d3 1 1
(2m)® (k- )2 - (k' - G)? & (2m)® (k' - G)2 - (k- g)? @

Two residues cancels = No worry about truncation effects here )

Situation changes when the transverse radiation part is included: éi l
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Conclusion

@ It can be foreseen that €' will reach the precision of O(10%)
@ Important to include the EM corrections, as enhanced by Al =1/2 rule

@ To determine the EM correction, we try to solve three problems

» Encode EM into Liischer and Lellouch-Liischer formalism
= Introduce truncated Coulomb potential

» Solve the issue for the mixing between / = 0 and 2 channel
= Coupled channel problem simplified due to ae-expansion
» Remaining issue: Include the transverse radiation

@ Pave the way for the realistic calculation of EM corrections K —
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Backup slides
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Truncation effects in decay amplitude

o - w decay amplitude

=9 -=0 200

e~ ar = Q0T + ot

AV
The relation for decay amplitude
Ac - Ar = (E,~ TIAV Glo) = (E,-, TIAV 6V (1+ V156D ) [o)
@ AV is non-zero at r > Ry; Vs = Vs + V() is non-zero at r < Rt

@ The free Green function (r|G(+)|r’) for r> Rt and r’' < Ry is given by

1 s 1 e
r|G(+)| 24 — ) o L jpe (EJ¥')
2 E—E’+/5 wk r

Truncation effects can be determined

. 1 ikr
Ac-Ar = [d3ru( ) (r)— ( ~1/ /Ike )AT
r
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Mixing of isospin states

Focus on Coulomb potential, no w7~ state
However, [ =2 and /| = 0 7 states still mix with each other

@ No EM: relation between charged ¢ = +—,00 and isopsin s = 0,2 77 states

out _ out (V23 1/V3\ [ cosO  sind
((rme) _S=ZO;2QCS|(7T7T)S) ' QCs_(—l/\/§ \/i/ﬁ)_(—sinﬁ cos@)

@ With EM:

'y out _ ’y out vy o_ cos 67 sin 07
|(7T7T) Z Q |(7T7T) ) ch_ (_Sine'y C0597

Define "t ((7m)Y|Hw|K®) = /% AY

sin20 ie'(%7-%) Re AJ (lmAg |mAg)

sin207 /2 ReA] -

=2 ()
€ = — — =
3 e 00 ReA) ReA]

sin 260
sin 260

is a small correction = focus on A? and 67 J
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Determination of A and §. from lattice QCD

Turn off EM and calculate correlators with I = 0,2 operators

Cr(t) = (drri(D)0L, 1(0))
= _20:2<0|¢m,/|(7r7r)s)e_E5t((7T7r)s|¢;fm’l,|0)5S’,557,,
= (UMUYY
where
_ <O|¢7r7r,0|(7771')o) 0 ~ e Eot
U‘( 0 <0|<z>m,2|(m>2>)’ M—( e-Ezt)

Turn on EM and calculate correlators with the same operators
Ci(t) = (Grmi(t)ol,(0))

> (Ol (7)Y e 5 ((wm) ]t 110)
5=0,2

(UM

where

s (0ol (7)) T Oldmrol(rm)D)) g (€5
’ _(”<0|¢m2|<m>§> 7<0|¢M,2|(m)§>)’ M ( )
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Determination of A and §. from lattice QCD

N D
@ Use the coefficient matrix to construct a ratio U™'U7 =1+ ( eh %))
N. N,
20 22

@ Build a ratio for the 2 x 2 correlation matrix: R(t) = C‘%(t)CV(t)C‘%(t)
@ Time dependence of R(t) yields
1+ 2Néé) + Eo(l)t Nz(é)e('-cz“g")t/2 + Nézl)e(EO‘EZ)t/2)

R(t) =
() (,\,2<3>e<52_50)t/2 o VD e(E-E)ef2 L4 2nD + ED

» EXY = E7 — E. can be used to determine §7, s = 0,2

, N,(,%) can be used to construct UY and compute AY = ((77)?|Hw|K°)

Need to modify Liischer quantization condition and Lellouch-Liischer relation to
include EM effects J
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